
Minimally Supervised Methods to Correct Optical Character Recognition

Andrew Stromme
Computer Science Dept

Swarthmore College
Swarthmore, PA 19081

astromm1@swarthmore.edu

Ryan Carlson
Computer Science Dept

Swarthmore Colege
Swarthmore, PA 19081

rcarlso1@swarthmore.edu

Abstract

Optical character recognition (OCR) is the
transformation of an image of handwrit-
ten or typed text to raw text. It is used
in a range of modern applications that can
make a significant impact, so it is impor-
tant to have robust OCR programs. There
are a variety of such programs today, both
propriety and open-source.

We have implemented a post-processing
layer over OCR output from GOCR to re-
duce errors and resolve ambiguities. We
first use an minimally supervised algo-
rithm to identify pairs of characters that
are often incorrectly identified with the
other. We then identify words that the
OCR program could not translate and use
an n-gram model to fix the errors. Our
testing reveals high precision and recall,
showing we can successfully modify the
OCR output.

1 Introduction

There is wide-reaching interest in OCR. The U.S.
Post Office uses the technology to identify postal
codes, and Google uses it to translate text from book
scans into searchable text. OCR can even be used
to catch image based spam. The average consumer
can use OCR to index bills or letters, digitizing and
making them available long after the ink fades. OCR
typically acts on document scans, which are often
subject to significant noise. Not all OCR programs

are created equally, with different paradigms pervad-
ing over different programs. These approaches are
discussed in Section 2.

We have chosen a relatively bare-bones OCR pro-
gram called GOCR (Schulenburg, 2010) in order to
best see the impact of our changes. GOCR reads and
classifies one character at a time and allows us to set
a confidence threshold for each character. Higher
thresholds result in higher precision, because the
system is more certain of its guesses. It also results
in lower recall since there are more characters that
have a lower confidence than the cutoff. GOCR also
outputs an unknown marker for every unrecognized
character.

Thus, we can raise the confidence threshold such
that the characters GOCR does output are correct
with very high probability. This allows us to post-
process the output under the assumption that most
characters are correct. We soon found out that this
assumption is not always true, since even at very
high confidence there exist characters that are of-
ten mistaken for others. To remedy this problem we
created a simple supervised learning algorithm that
identifies characters that are commonly confused.
Whenever we see any of these characters, we can
swap them and check if the swap results in a better
choice.

We define an ambiguous word as one that con-
tains either the unknown marker from GOCR or an
ambiguous character as defined above. In our al-
gorithm, each unknown marker is expanded to any
character and we check which of the resulting words
are valid. Given this set of possible valid words, we
then use an n-gram model to choose the most likely

word from the choices. Using this model gives syn-
tactic context to a model that has none otherwise.
We further describe our process in Section 3.

While a quantitative evaluation (see Section 4) of
our data is certainly useful, we also perform some
qualitative analysis. We compare our processed
OCR output against both the original text and the
baseline unmodified OCR output. This gives a sense
of improvement over GOCR. We examine common
cases that our algorithm does not correct and other
issues in Section 5. There are a number of inter-
esting questions that have arisen from our results,
which we discuss in Section 6.

2 Related Work

To motivate the use of OCR, we offer a small sam-
pling of interesting applications for the technology
in this section. We then describe some different ap-
proaches used and paradigms taken by OCR pro-
grams today.

2.1 Applications

In the early 1980’s the U.S. Postal Service (USPS)
started using OCR as part of a modular system to
identify addresses and spray the appropriate POST-
NET bar code onto the letter. This bar code was
then read, sorted, and sent to the recipient. The sys-
tem could process approximately 30,000 pieces of
mail per hour. In contrast, manual identification had
previously moved at between 500 and 1,000 pieces
per hour. The technology has improved since then,
and importantly has allowed the USPS to make large
volumes of mail manageable (Srihari and Kuebert,
1997).

Another interesting project uses OCR to detect
image-based spam. To bypass filters, distributors
are disseminating spam with images of their prod-
uct (e.g. Viagra) but otherwise no mention of the
product. Ma et al. (2007) plug OCR into a popular
spam filter called SpamAssassin. They pre-process
the email and translate the image to text which the
filter can then act on. Since the OCR system was
still subject to some error, Markov models were used
on the output to make the system resistant to mis-
spellings.

OCR has also made Google co-founders Larry
Page and Sergey Brin’s dreams come true. The

Google Books project has the goal of scanning and
indexing the world’s books and making them avail-
able online. To make these books and other docu-
ments searchable online, OCR has been employed
to great effect. Having the raw text of scanned doc-
uments allows Google to use their search algorithms
and make these books more accessible by returning
relevant results to user queries (Vincent, 2007).

2.2 Program Approaches

We have so far discussed applications that use of
build on OCR programs. But the underlying struc-
ture of the technology is not a given. We explore
three programs in this section: Tesseract, OCRopus,
and GOCR.

2.2.1 Tesseract
This project was initially developed at Hewlett-
Packard and is currently in development by Google.
Tesseract first analyzes connected components to
generate blobs. To determine the type of spac-
ing (fixed or proportional) the blobs are broken
into text lines and analyzed. The process now be-
comes two-pass operation. Any words identified
with high enough confidence are logged and passed
to be learned by an adaptive classifier. The second
pass gives the classifier a chance to use its newfound
knowledge to classify the text again. The adaptive
classifier uses isotropic baseline/x-height normaliza-
tion which allows it to distinguish capital from low-
ercase words. The engine can correctly identify
about 99% of characters, which translates to approx-
imately 95% word accuracy (Smith, 2007).

2.2.2 OCRopus
OCRopus is notable because of its modular design.
The system is composed of a set of plugins for layout
analysis, text line recognition, and language model-
ing. Before all this, a preprocessing step readies the
engine to analyze the image by adjusting for skew
and cleaning the image. The layout analysis divides
the image into non-text regions and text lines. Also,
it is responsible for determining the reading order of
the lines. Interestingly, the text line recognition pro-
cess uses Tesseract. Finally, language models are
applied to correct the output. These models could
be anything from n-grams to stochastic grammars.
One common representation for these models is a fi-

nite state transducer, which comes as a backend with
the program (Breuel, 2008).

2.2.3 GOCR
GOCR is a much simpler OCR program than those
we have discussed. It is simple and fast, does not re-
quire (or take) training data, and only works on non-
rotated, black and white images. Some simple pre-
processing uses threshold value detection, box de-
tection, zoning, and line detection. An OCR engine
is then called twice, the first for the entire document
and the second for any unknown characters. This
second pass offers more context than the first allow-
ing more characters to get classified. This simple
structure makes the system both very accessible and
wide open for improvement. Our post-processing
contributions to this system over others are more
necessary and make a larger impact (Schulenburg,
2005).

3 Methods

We use a two-phase minimally supervised learn-
ing approach to fixing OCR. The first phase iden-
tifies a set of oft-confused characters. The second
phase expands words with those confusable charac-
ters and unknown markers from GOCR to possible
words and then evaluates the choices using an n-
gram model to pick the best.

3.1 Learning Ambiguous Characters
Soon after we began our experiments, we realized
there are a set of character pairs that often get con-
fused. For example, the letter o and the number 0
are often mistaken for each other by the OCR en-
gine. Instead of hard coding these pairs, we decided
to learn them given training data.

We first create a document with all alphanumeric
characters in various fonts. We convert that docu-
ment to both an image and raw text. The image
is fed into GOCR and the output is recorded. We
then compare the output to the raw text transcription
character by character and record any disparities.
Since the image is essentially free of noise the OCR
translation should perform close to its best, record-
ing these as ambiguous characters is valid. We note
that this method is not specific to English, but will
adapt to any domain where the set of possible char-
acters is known. As we scan through our test cor-

pora, we are careful to be suspicious of words con-
taining any of these characters.

3.2 Expanding Ambiguous Words

In Section 1 we defined an ambiguous word as one
containing ambiguous characters or the unknown
marker output by GOCR. Going forward, we will
denote the unknown marker as ‘ ’. For example, if
the source word is own and OCR could not recog-
nize the w and mistook the o for a zero, our output
would be 0 n. Given this (and not knowing that the
correct word is own), we expand the output to a set
of possible words.

First we toggle the 0 to be the letter o, since it is
in our list of ambiguous characters. Next we expand
the number of unknown markers to zero, one, and
two markers such that we have the following set of
possibilities:

0n, 0 n, 0 n, on, o n, o n

We allow any unknown marker to expand to one al-
phanumeric character1 and then check the resulting
string against a dictionary of valid English words.
To get these words, we gather data from the Brown
corpus, the Reuters corpus, and the Gutenberg cor-
pus. We also compute counts of these words and
select the top ten words with the highest counts to
move on to the next stage. In our example, the above
would expand to

on, own, open, oxen, oven, omen

Note that there are only six total options, but in gen-
eral there can be thousands or hundreds of thousands
of options. In this case we limit ourselves to the ten
most likely options as defined by our smaller cor-
pus. We can now use these options as part of an n-
gram model to determine which option is most likely
given the previous words in the test document.

3.3 N-gram model

Suppose we are given the following OCR output

you can brew your o n beer

and we want to find which option o n expands to.
Looking at just the word counts alone, we might find
that on is the most likely candidate. But given the

1we additionally allow expansion to single quotes to account
for contractions.

context, own is clearly the best choice. We can use
an n-gram model to disambiguate the words.

Given some unknown word wi, we want to predict
its likelihood given every word that came before it.
Unfortunately, it is fairly trivial to come up with a
valid sentence that has never before been uttered2

and it is difficult to assign accurate probabilities to
novel strings of words. Even given a corpus with
vast coverage, trying to compute the probability of a
word given all the previous is not possible.

We can use an n-gram model to make this process
feasible. The model assumes that the probability of
some word wi given all the previous words wi−1

1 can
be represented as the probability of that word given
the previous n− 1 words. Formally, we have

P
(
wi | wi−1

1

)
= P

(
wi | wi−1

i−(n−1)

)
For example, in a bigram model we have n = 2
so P

(
wi | wi−1

1

)
= P (wi | wi−1). This method

proves to provide some syntactic context and al-
lows our algorithm to make better decisions. Google
has released their indexed n-grams counts for
n = 1, . . . , 5 (Franz and Brants, 2006) which con-
tains over one trillion tokens with over thirteen mil-
lion types. This serves as our n-gram corpus.

We have empirically determined that bigram
counts with a backoff to unigram counts are most ef-
fective. Additionally, we use unigram counts if the
preceding word is left unfixed in previous passes. As
we traverse the test document, any time we have a
known word followed by an unknown word (in our
example, your o n) we can generate the top ten
bigrams and query our n-gram corpus to see which
is the most likely. If none of the options appear as
bigrams in Google’s index, we drop back to unigram
counts.

To see the effect of using bigrams before resorting
to unigrams, consider our example word pair your
o n. Just using the unigram counts, the word on
(which we get by collapsing the unknown indicator)
was seen over 3.4 billion times wheres as the word
own was only seen about 200 million times. How-
ever, looking at the bigrams your on and your
own we see that the counts become 300 thousand
against 63 million, an order of magnitude difference
in the other direction. Simply selecting the higher

2“cry like an algebraic field” may be such an example.

unigram count is rarely sufficient, while the bigram
count tends to provide enough context to select the
correct word.

When we are given OCR output, we first search
through the output and find any known words fol-
lowed by an unknown one and compile a list. Any
time that no expansions of unknown markers in a
given word result in a bigram in our index, we drop
to unigram counts. Thus, if none of the expansions
of your o n resulted in a valid bigram, we drop to
counting the unigram counts for o n and we would
select on. This means that a chain of unknowns
takes a long time to compute. If our test corpus had
instead been

you an brew you o n beer

we process you an and brew you simultane-
ously, deciding the corrections are you can and
brew your, respectively. Then we make another
pass on your o n to choose your own. Thus,
our runtime is determined primarily by the longest
string of consecutive ambiguous words since the al-
gorithm is primarily I/O bound. Scanning through
large files that contain the n-grams has a high over-
head, and as we execute more passes we are query-
ing fewer and fewer n-grams from each file, which
results in diminished returns.

4 Results

We tested our algorithm on seven documents, ex-
amining various statistics about the results. In this
section we discuss our testing methods and present
quantitative results.

4.1 Corpora

As described in Section 3.2, the dictionary we use
to pick the top ten expansions of unknown markers
is based on the Brown, Reuters, and Gutenberg cor-
pora. This combined corpus contains five million
tokens and over one hundred thousand types. We
have experimentally determined that most words in
our test documents are found in this initial corpus.
This is important, since this first pass word extrac-
tion is then sent to our Google corpus to find the
best n-grams, and if significant words were missing
from our initial corpus they would never make it to
the next phase.

We introduced Google’s n-gram corpus, which
contains over one trillion tokens and thirteen million
types, in Section 3.3. Acting as our second phase,
this corpus represents excellent coverage of the En-
glish language. It also represents how people write
today, since it the data is culled from the Internet at
large. This is important when analyzing recent doc-
uments because it may contain many phrases com-
mon today that are not accounted for in other cor-
pora.

To test our ability to correctly fix OCR output, we
used the first page of seven distinct essays from an
introductory Cognitive Science class. We had access
to the original PDF’s which we converted to image
files, which means our tests were as free from noise
as possible. Additionally, the essays were written
using Latex, which creates single glyphs from two
distinct letters when adjacent (fi, for example). Fi-
nally, the content is that of an academic paper – it
is prose that contains mostly common words, with
some occasional technical jargon thrown in. It also
contains a high number of authors’ names which are
less likely to show up in our five million token cor-
pus. This means our initial corpus is sufficient for
most of the words, but there are some that will throw
off our algorithm and leave room for improvement.

4.2 Tests

Before we present our results, it is interesting to look
at the effects of increasing the confidence levels.
GOCR has its own internal confidence score asso-
ciated with each letter that it converts, however this
information is inaccessible to the end-user. What
is accessible is a confidence threshold, adjustable
per document. We experimented with various con-
fidence levels, from 95% (the default) up to 99%.
When GOCR has a match for a letter it checks the
probability and only outputs the letter if the prob-
ability is above the threshold. Initially we worked
with the default confidence level but found it to be
limiting. Often letters were wrong or merged to-
gether in ways that our ambiguous character detec-
tion could not fix. Increasing the confidence level
meant more words contained unknown markers, but
this is beneficial because our work is designed to fix
those words. The percent of words that the GOCR
incorrectly classified for various confidence levels is
plotted in Figure 1.

æ æ

æ

æ

æ

95 96 97 98 99
0

2

4

6

8

10

GOCR Confidence H%L

A
vg

%
In

co
rr

ec
tW

or
ds

Effects of OCR Confidence Levels

Figure 1: The percent of words GOCR believed it
got correct but were actually wrong, averaged across
7 test documents for various confidence levels. Note
that as we increase the confidence, we see a marked
decrease in incorrect words.

We ran tests over each of the seven test docu-
ments and calculated statistics for each. These have
been averaged together and are shown in Table 1.
We see that recall and precision both increase along
with confidence until 98 percent, at which point they
both drop sharply. This is because at 99 percent con-
fidence, too few characters are being classified so
there is not enough context for our bigram model to
have effect. We see that the best results are achieved
with GOCR set to 98 percent confidence.

Because our work is post-processing on top of
GOCR, we must think carefully about how to com-
pute precision and recall. It is not valid to compare
the final document with the original without consid-
ering the work GOCR does itself. In the raw GOCR
output there are some number of unknown markers.
We define the set of possible words to be corrected
as those containing at least one unknown marker.
From those words we can either choose to fill in a
new word or leave it unchanged. Precision is thus
the number words that we guess correctly out of the
number words we chose to guess. Recall is defined
as the number of words we correctly guess out of the
total number of possible words to guess. We con-
sider guesses to be correct when the words match
exactly or if they only differ in case.

GOCR
Recall Precision

Correct Total Unfixed OCR
Confidence Fixed Words Fixed Words Words Wrong Words

95 % 78.6 % 86.2 % 96.9 110.4 13.0 32.0
96 % 78.5 % 87.7 % 97.1 111.0 13.0 32.0
97 % 76.4 % 83.9 % 173.9 207.4 20.14 19.3
98 % 81.9 % 87.8 % 200.0 232.0 12.9 3.4
99 % 68.4 % 71.1 % 227.7 320.1 12.7 1.6

Table 1: Statistics on correction algorithm for five OCR confidence levels. Results averaged across 7 test
documents. Highest precision and recall values are in bold.

5 Analysis

In addition to quantitative results, we also closely
analyzed our results qualitatively. Here we present
some key examples that point to the impact of our
design decisions. We also discuss some limitations
of those decisions.

5.1 Impact of Confidence Levels

Let us examine the recognition of the word
understand in one of our testing documents.
When set to a 95 percent confidence threshold,
GOCR converted this word in the source image to
the word urlderstarld. GOCR incorrectly clas-
sified the consecutive characters nd as rld twice.
This is a word that we can’t correct because rl is not
in our ambiguous characters dictionary and there are
no unknown indicators in the word. However, when
we run GOCR with a confidence threshold of 98 per-
cent on the same source image we get u derst d
as the output. GOCR was unsure about more than
just the n characters but importantly it did not mis-
classify any characters, so our algorithm is able to
select understand as the best candidate. While
there are far more unknown characters, roughly on
the order of 3 times as many across our testing docu-
ments, our models work well in such environments.
Thus, there is significant value in setting GOCR’s
confidence threshold high.

5.2 Expanding Unknown Markers

Initially we were unsure how many words to match
in the initial pass against the nltk corpus. For
words with unknown characters at the beginning of
the word there can be a huge number of potential
matches, somewhere in the range of 300,000 or more

for three unknown markers (). We initially chose
5 matches as a reasonable constraint, but this proved
too limiting as the correct word was often not in
the window of matches. This is due to our local
corpus and the Google corpus having different un-
igram count accuracies. However, there was not a
difference in the precision of our results regardless
of whether the window was set to 10 options or 100
options. In the results shown the window is set to
10 options. The runtime of our algorithm did not
increase noticeably when the window was increased
to 10 or even 100 options, indicating the largest cost
is in file access of the Google n-grams.

Interestingly, we discovered a case where we
do correct misspellings. The word consciousness
was spelled incorrectly as conciousness in one of
our testing documents and because its OCR output
contained an unknown character (co ciousness)
this got expanded to two unknown characters
and then was matched against the correct word
consciousness.

5.3 Limitations

There are a few places where the model still fails
consistently. If a number appears before a word
with unknown characters (i.e. there are 45
clo es) the bigram model is thrown completely
off because the word following the number rarely
depends on value of that number. We also have a
hard time with proper nouns where even Google has
not seen the word we are looking for. Proper nouns,
such as authors’ names, are often document-specific
and can be repeated many times throughout a sin-
gle document. For instance, in one of our testing
documents the proper noun Premacks occurred 10
times. In that same document, we chose to ignore

only 19 words which had unknown characters within
those words. Thus that one proper noun accounted
for over half of our non-fixed words.

We are also often expanding or shrinking an un-
known marker and then selecting a word based
on the new match which is more popular but is
incorrect. For example, in unintentionally
give the marker was reduced to nothing and
the word was changed to give because the bi-
gram unintentionally give occurs more
than unintentionally given. A possible re-
sponse might be to weight the bigram or unigram
counts based on how the unknown markers in the
word were expanded, contracted or left the same.
The expansion and contraction was implemented be-
cause GOCR sometimes misreads two characters as
one unknown, or one character as an unknown and
the correct character.

The process currently takes a long time to run,
in the range of 8 minutes for our documents with
450 words, 225 of which are ambiguous. This
stems from two factors, the first is the large num-
ber of matches which can potentially be generated
for each ambiguous word and the second is the large
amount of disk access needed to use the google cor-
pus. Possible improvements to this are discussed in
Section 6.1. However, the currently large runtimes
prevent this from being used as a reasonable addi-
tion to OCR in cases where speed of results is at all
important.

6 Future Work

There are several ways to extend this work. The
biggest problems involve the speed of the program.
It takes an unreasonable amount of time to process
the output and make corrections. We can also con-
sider the way we use n-grams and ways we might
want to extend this. We then turn to other uses for
our program aside from OCR.

6.1 Speedup

Since all the n-gram data is stored externally in large
files, random access is very slow. We have identified
two simple ways of speeding up the process. The
first is to load the k most popular bigrams and uni-
grams from disk into memory. We expect that most
of the unigrams are contained in the top million en-

tries and the unigrams are perhaps in the top five mil-
lion entries. If an n-gram is not found in memory, we
still have the option of backing off to disk. Taking an
initial step to calculate these would be expensive, but
we can later save only the top entries to disk which
can be loaded quickly.

Another method of reducing runtime is to break
Google’s n-gram files into smaller files. Currently,
the files are broken into sets of large (approximately
160 MB) files and for each set there is an index with
the head n-gram of each file and where it is found.
The index allows us to quickly seek to the correct
file, but the files are still so large that scanning for
an n-gram towards the end of the file is still too ex-
pensive. A set of smaller files and an updated index
will greatly speed up the program. These two ap-
proaches are not mutually exclusive. Instead, they
should be combined such that we can check mem-
ory and if the check fails we can get faster lookups
on disk.

6.2 Compare N-Gram Position
Our current method of using n-grams gives some
context, but sometimes more is needed. Consider
the examples

he is beast

and

he is animal

In the first case, the unknown indicator should ex-
pand to a. In the second case, it is clear the indicator
should be an. However, in our current system, both
cases will be examined with the bigram is and
will expand to the letter a since there are an order of
magnitude more examples of is a than is an. To
account for this, we can use a trigram model with the
ambiguous word sandwiched between two known
words. In this case, it becomes apparent which ar-
ticles are needed. While there are still counts in
Google’s index for ungrammatical combinations (by
the nature of their data source), they are dwarfed by
the grammatical statements. Note that we could do
this efficiently since we have the first word in the tri-
gram, which allows us to index into the correct file
and scan from there.

Another example may be instructive. Suppose we
have the OCR output

to spire towards

Using the current bigram model, to inspire has
a count of 913,869 against to aspire at 95,204.
On the other hand, if considering the full trigram,
to aspire towards is seen 1,347 times, while
to inspire towards is counted only 85 times.
Again we see that the added structure can make a
significant difference. However, it is important to
note that as the OCR character-level confidence is
increased the probability that an ambiguous word is
found between two known words decreases. Pur-
suing this line of experiments will require carefully
finding a balance between confidence and usefulness
of the n-gram model.

6.3 Other Applications

Broadly speaking, we can apply our process to any
transcription program that outputs text and indicates
where it is unsure. Additionally, the input should not
be random words thrown together, like one might
find on a receipt or bill statement. Since we primar-
ily rely on an n-gram model, we need text with un-
certainty that benefits from the added syntactic con-
text. Any type of lossy communication channel is
an excellent application for our services. Here we
have perhaps spoken word transcriptions with un-
certainties. Moreover, we suspect Google’s n-grams
is more representative of spoken word than formal
writing, so using their n-grams will be particularly
effective.

7 Conclusions

We have presented a post-processing algorithm to
edit OCR output from GOCR. The first step is to
learn a list of character pairs that are commonly con-
fused. This enables us to swap these characters and
check if a word is created as a result. The second
step is more involved, making use of Google’s n-
grams. We must check the output for ambiguous
words preceded by a known word. We can then iter-
atively improve our guesses by choosing the best bi-
gram (or unigram if necessary) in successive passes
of the OCR output.

Despite prohibitively large runtimes, we have
shown very promising results. Over different cor-
pora, we have maintained high precision and re-
call. At 98 percent confidence levels, our algorithm
achieves a precision of 87.8 percent and a recall of

81.9 percent. As we have discussed, many of the is-
sues result from proper nouns that are not in our ini-
tial corpus and from insufficient context that would
be supplied by the trigram model. With some of the
modifications addressed earlier, this algorithm can
significantly increase accuracy from original OCR
transcription.

References
Thomas M. Breuel. 2008. The OCRopus open source

OCR system. In Proceedings of IS&T/SPIE 20th An-
nual Symposium.

Alex Franz and Thorsten Brants. 2006. All
our n-gram are belong to you. http://
googleresearch.blogspot.com/2006/08/
all-our-n-gram-are-belong-to-you.
html, August.

Wanli Ma, Dat Tran, and Dharmendra Sharma. 2007.
Detecting image based spam email. In Proceedings
of the 1st international conference on Advances in hy-
brid information technology, ICHIT’06, pages 168–
177, Berlin, Heidelberg. Springer-Verlag.

Joerg Schulenburg. 2005. GOCR LinuxTag Lec-
ture. http://www-e.uni-magdeburg.de/
jschulen/ocr/linuxtag05/v_lxtg05.
pdf.

Joerg Schulenburg. 2010. GOCR. http://jocr.
sourceforge.net/.

Ray Smith. 2007. An overview of the tesseract ocr en-
gine. In Proceedings of the Ninth International Con-
ference on Document Analysis and Recognition, vol-
ume 2, pages 629–633, Washington, DC, USA. IEEE
Computer Society.

Sargur. N. Srihari and Edward. J. Kuebert. 1997. Integra-
tion of hand-written address interpretation technology
into the united states postal service remote computer
reader system. In Proc. Int. Conf. Document Analysis
and Recognition (ICDAR), pages 892–896. IEEE-CS
Press.

Luc Vincent. 2007. Google book search: Document un-
derstanding on a massive scale. In In Proceedings,
IAPR 9th Intl Conf. on Document Analysis and Recog-
nition (ICDAR07).

