
Evaluating Multidimensional Histograms in ProstgreSQL

Dougal Sutherland
Swarthmore College

500 College Ave
Swarthmore, PA

dsuther1@swarthmore.edu

Ryan Carlson
Swarthmore College

500 College Ave
Swarthmore, PA

rcarlso1@swarthmore.edu

Abstract

Query optimization depends heavily on estimat-
ing the fraction of rows returned by a query, a pro-
cess known as selectivity estimation. When queries
include multiple predicates, most current database
systems assume that the predicates are mutually
independent: selectivities for each predicate are
evaluated via histograms and multiplied together.
When attributes are not actually independent, se-
lectivity estimates are often much smaller than they
should be, and non-optimal access paths may be
chosen. This can result in significant slowdowns.

Multidimensional histograms (Muralikrishna
and DeWitt, 1988) solve this problem by account-
ing for the correlation present between columns in
the database. If a query contains predicates that are
stored in the multidimensional histogram, we can
use it to estimate selectivity much more accurately.

We have implemented a two-dimensional his-
togram in PostgreSQL. We evaluate the effective-
ness of our histogram on correlated data, real and
contrived, and conclude that it is a worthwhile ad-
dition to the code base. Moreover, by implement-
ing this simpler two dimensional histogram, we
show that it is feasible and advantageous to imple-
ment a generalized multidimensional histogram in
PostgreSQL.

1 Introduction

A key component of a database management sys-
tem (DBMS) is the query optimizer, which, given
a query, chooses the access path with the minimum
expected cost. These costs are computed in large
part based on the selectivity of its predicates, that is,
the fraction of rows that satisfy those predicates.

In most databases, selectivity estimation relies on
a precomputed histogram for each column. These
histograms are generally equi-depth, meaning that
each bin of the histogram contains about an equal
number of elements of the data; such histograms

were shown by Shapiro and Connell (1984) to
be more accurate than traditional equi-width his-
tograms for database usages.

To estimate selectivities of compound predicates
(i.e. those joined with a SQL AND), most database
systems employ the attribute-value independence
assumption. This assumption states that the at-
tributes of a given relation are mutually independent.
In this case, the joint distribution of the data can
be expressed simply as the product of the marginal
distribution for each attribute. The selectivity of
a query can therefore be computed by multiplying
the selectivity of each of its predicates, calculated
through single-dimensional histograms.

Unfortunately, however, most real data is not in-
dependent. In a typical personnel table, salary might
be correlated with age; in a table of vehicle data, the
make and the model of a car are highly dependent.

To see why this can be problematic, suppose
that we have two queries: P selects cars with
model=‘Camry’, while Q selects cars with
model=‘Camry’ AND make=‘Toyota’. P
and Q will clearly have identical result sets, and thus
their selectivities should be equal. When calculat-
ing the selectivity of Q under the assumption of in-
dependence, however, the selectivities of the make
and of the model are multiplied; the make selectiv-
ity is “double-counted.” Thus, systems that assume
attribute independence can greatly underestimate the
true selectivity.

Selectivities are, as mentioned, a key component
in the query optimizer’s choice among access paths.
Suppose the database has indexes on make and
model. Broadly speaking, the access path options

are a sequential scan through the entire relation, or
a heap scan using the indexes. If the selectivity is
high enough, a sequential scan avoids excessive ran-
dom I/O through the data. Since Q’s selectivity has
been underestimated, however, the DBMS may in-
correctly choose an index scan, which could lead to
a significant performance hit as the disk seeks back
and forth.

It is therefore desirable for the database to be
aware of the data’s joint distribution, at least in some
cases. The histograms described thus far can in fact
be extended to do so in a natural way (Muralikrishna
and DeWitt, 1988). A multidimensional histogram
can be constructed by creating a single-dimensional
histogram on the first attribute, then a conditional
histogram for the second attribute corresponding to
each bin from the first dimension, and so on. (The
process is described in more detail in Section 2.1.)
We can then walk down the chain of histograms to
compute a selectivity estimate in the query optimiza-
tion process (as described in Section 2.2).

We present an implementation of multidimen-
sional histograms, albeit restricted to the two-
dimensional case, in the PostgreSQL database sys-
tem (Stonebraker et al., 1990). We choose to do so
for two reasons. First, multidimensional histograms
improve performance on queries involving corre-
lated data. Provided that we have a histogram for
the columns in the query, we can calculate selectiv-
ities much more accurately and thus choose better
access paths. Second, this implementation demon-
strates that it is reasonable to expect that multidi-
mensional histograms could be incorporated into an
existing DBMS without major changes to the code-
base. We thus encourage developers to actively pur-
sue high-quality implementations for their database
systems.

We first describe the details of the mul-
tidimensional histogram implementation within
PostgreSQL (Section 2) and present an experimental
validation (Section 3). We then discuss related re-
search (Section 4) and future directions for the work
(Section 5).

2 Histogram Implementation

We modify two components of the PostgreSQL sys-
tem, as discussed below. The standard statistics col-

lection process1 must be modified to create and store
the multidimensional histograms. The query opti-
mizer must also detect when a query contains predi-
cates on both of the columns of a multidimensional
histogram, and use that histogram for selectivity es-
timation.

Our implementation of a two dimensional his-
togram is a proof of concept for the wider
PostgreSQL community. Broadly speaking, the
method we use is generalizable to arbitrary dimen-
sion. Some aspects of the system, however, limit its
generalizability, as discussed in Section 2.3.

2.1 Creating the Histogram

The standard PostgreSQL system constructs a single
dimensional histogram as follows:
(1) take a sample of the values in the column;
(2) sort the sample;
(3) create a list of most common values and track

their frequencies separately (so they are not en-
tered into the histogram);

(4) calculate the number of histogram bins, which
will be user-specified except that the system
does not create more bins than there are distinct
values in the data;

(5) find histogram boundaries by reading the values
at evenly-spaced positions in the sorted list.

The DBMS stores histograms in a statistics cat-
alog, which can contain up to a specified number
of entries of arbitrary statistical information about a
column’s attributes. This catalog is visible through-
out PostgreSQL; the query optimizer examines the
histograms stored here when it makes selectivity es-
timates.

Our modified PostgreSQL employs the multidi-
mensional histogram construction algorithm of Mu-
ralikrishna and DeWitt (1988). When defined, the
attributes of a multidimensional histogram must be
ordered. We first collect and sort a sample of the
data according to the histogram’s first column, just
as in the standard model.2 Since we are primarily
interested in the effect of the multidimensional his-
togram, we simplify the implementation by avoiding

1Users initialize this process with the ANALYZE command.
2Postgres collects a sample of size 300 times the desired

number of histogram bins, following Chaudhuri et al. (1998).
We currently use an arbitrary sample size of 300,000 for multi-
dimensional data; see Section 3.2.

most-common-values lists. Thus, the next step is to
determine the number of histogram bins for the first
attribute and find the histogram boundaries. As be-
fore, this is stored in one of the slots in the statistics
catalog.

To calculate the second level of the histogram
(which we call a set of conditional histograms),
we must consider the first level histogram’s bucket
bounds. For each bucket, we now sort the values in
that bucket according to the second attribute. Once
they are sorted, we compute the conditional his-
togram bounds and store them in another slot in the
catalog. This now allows us to identify how many
tuples match the first predicate, and then how many
of those match the second predicate.

Muralikrishna and DeWitt (1988) find that the
cost of constructing a D-dimensional histogram
with b buckets per level on a relation of size Z is
approximately a constant times

ZD

[
logZ − D − 1

2
log b

]
. (1)

The cost of constructing a two-dimensional his-
togram on a relation, then, is somewhat less than
twice the cost of a one-dimensional histogram on
that same relation. We empirically examine the time
required for histogram creation in Section 3.2.

2.2 Using the Histogram

Our system currently supports only queries of a very
specific form. If we have a multidimensional his-
togram on attributes a and b in table t, the system
can employ the histogram on queries of the form

SELECT * FROM t

WHERE a > m AND b < n;

where m and n are constant values. Note that any in-
equality operator will work in either clause. Queries
with more than two clauses are not currently handled
by our implementation. Equality operations are also
unsupported.

For queries of the form processed by our sys-
tem, the first step in selectivity estimation is to find
the multidimensional histogram on this pair of vari-
ables. When the histogram is generated, it is as-
signed a unique identifier, determined based on the

attributes involved. This is stored along with the his-
togram. Now that we are trying to retrieve the his-
togram, we recompute the unique identifier and load
the multidimensional histogram from the catalog.

To identify which values satisfy the a > m clause,
the system finds (via binary search) the position of
m in the first-level histogram, which contains N
bins. Let Pi be the bin selectivity of a > m, so
that Pi =

1
N if the entire bin satisfies a > m. For

each bin with nonzero Pi, the system then runs bi-
nary search through the conditional histogram for b
to identify those bins that also satisfy b < n. Let Qij

be the selectivity within that conditional bin, defined
analogously to Pi. The total selectivity is thus a sum
over all of the bins:

selectivity =
∑
i

Pi ·
∑
j

Qij

 . (2)

2.3 Challenges of Generalization
Though we attempted to make our multidimensional
histogram implementation generalizable to n dimen-
sions, we made some choices that assume two-
dimensionality. The storage of the conditional his-
tograms is the biggest concern.

As currently implemented, two-dimensional his-
tograms use two of the statistics arrays in the cata-
log. The entire multidimensional histogram cannot
be stored in a single array, because PostgreSQL re-
quires that each element of a statistics array be of
the same type, while our histogram must support at-
tributes of differing types. The number of available
statistics arrays is a constant (defaulting to 4), speci-
fied in the underlying code. Thus it can be adjusted,
but once the code has been compiled and the statis-
tics arrays constructed, new histograms of higher di-
mensionality could not be created. We do not know
of a workable solution at this time outside of funda-
mental alterations to the form of the statistics cata-
log.

The histogram creation code would also need to
be somewhat more complex in the n-dimensional
case. In particular, we are not aware of a clean way
to deal with arrays of arbitrary dimensionality in C.

3 Experiments

We conducted experiments on two datasets, one con-
trived and one from the real world. We have three

id value value2 firstname lastname
1 0.043 0.086 Maria Johnson
2 9.427 18.854 James Davis
3 8.909 17.818 James Jones
4 8.695 17.390 William Miller
5 9.563 19.126 William Williams
.

Table 1: A small sample of Double. Note that
value2 = 2 * value.

basic tests for each dataset. First, we want to know
how much longer statistics generation takes when
it must also construct multidimensional histograms.
Second, for each query, we compare the selectiv-
ity estimations generated from the multi- and single-
dimensional histograms, which helps determine the
chosen access paths. Finally, we look at total query
runtimes when using the standard histogram system
and when using our modified histograms.

All experiments were conducted on a machine
with a 2.8 GHz Quad-Core AMD Opteron processor
and 16 GB of memory. PostgreSQL configuration
options were left at their default values except when
otherwise noted.

3.1 Datasets

We first discuss experiments run on synthetic data.
This data, which we call Double, is a single re-
lation which consists of a sequential id, a value
derived from a uniform distribution between 0 and
10, a value2 field that is double the first field, and
firstname and lastname fields generated in-
dependently from a list of 64 total names. A small
sample of Double is shown in Table 1. Note that
there is a perfect correlation between value and
value2. This allows us to run precise tests that
combine the attributes but still return identical re-
sults. In our tests, the relation contained ten million
rows.

We also experimented with U.S. census data from
the 2009 Public-Use Microdata Sample (U.S. Cen-
sus Bureau, 2009), containing data on 1.27 mil-
lion individuals. The raw data contains over a hun-
dred attributes, ranging from age and ethnicity to
how long an individual has lived in their current
home. We select only two attributes for our rela-

Figure 1: The data distribution of our Census
dataset; the color of each point represents the num-
ber of tuples with education level given by the hori-
zontal position and income given by the vertical po-
sition. Less than two percent of the tuples have in-
comes above $200,000.

tion, which we call Census: income and schooling.
Income is measured in dollars. Schooling is coded
in values from 1 to 24: 1 represents no school, 2
through 15 represent various levels of grade school,
and 16 through 24 represent different levels of post-
secondary education. A graphical summary of the
portion of the data with incomes less than $200,000
is shown in Figure 1; note the correlation between
the attributes.

3.2 Statistics Generation

We measured the running time of the statistics gen-
eration process on relations of various sizes with and
without multidimensional histogram creation. Fig-
ure 2 shows the time taken to build statistics on a ta-
ble with and without multidimensional histograms.

Note that the time needed for both types of his-
togram creation more or less levels off after a cer-
tain point: 30,000 for the single-dimensional case,
and 300,000 for the two-dimensional case. This is
because PostgreSQL creates histograms based on
a sample of the data, as described by Chaudhuri

Figure 2: Time taken to create histograms on sub-
sets of the Double dataset of various sizes. Times
stay essentially the same for larger sizes than shown,
because the histograms are generated based on sam-
ples of the data.

et al. (1998). For a histogram with the default
100 bins, the sample is of size 30,000. For two-
dimensional histograms, we arbitrarily use a sample
of size 300,000. Once the relation is larger than the
sample size, then, the only difference in histogram
creation is that I/O must be done across a larger re-
gion of the disk and so will be slightly slower.

For values less than 30,000 – that is, those val-
ues for which the histograms are actually being cre-
ated on relations of the same size – a simple anal-
ysis finds that Equation 1 underestimates the rate at
which construction times increase. Further analysis
would be needed to determine why this is so, or the
actual rate at which it does increase.

The total time needed for histogram construction
can be effectively limited by the sample size for
which they are constructed. Further research into
the trade-off between accuracy of representation and
histogram construction time would be helpful for a
real-world implementation. Histograms need be re-
constructed only when the underlying data distribu-
tion changes, however, and are made without down-
time or significant performance penalty to the sys-
tem. The cost therefore seems minimal.

3.3 Selectivity Estimates
One measure of success comes directly from the
selectivities generated using multidimensional and

single-dimensional histograms. We can compare the
error rates of each to see how much our system im-
proves over the stock selectivity estimator. We ran
range queries on the Double dataset of the form

SELECT * FROM double WHERE

value > x AND value2 > y;

where x and y range over all values of value and
value2.

Figure 3a shows the selectivity error over each
combination of x and y for the single dimensional
histogram. Note that most values for Figure 3a are
in the five to ten percent range, with some as high as
25 percent.3

Figure 3b presents the equivalent measure using
our multidimensional estimator. Here all values are
between zero and three percent. Our estimates are
therefore much more accurate when using multidi-
mensional histograms.

Selectivity errors for the Census dataset are
shown in Figures 4a and 4b. Although there is
some error visible for the multidimensional system,
it is far smaller and far more localized than for the
independence-assuming system.

3.4 Access Paths

As discussed in Section 1, selectivity estimates are
used to choose between access paths. We ran the
same set of queries on Double as before on both
the single- and multidimensional histograms. These
results are shown in Figure 5. The multidimensional
system chooses a sequential scan for more values of
x and y than its single-dimensional counterpart since
it is estimating selectivity more accurately.

In the gray region of Figure 5 where the
two methods disagree on the proper access path,
the sequential scan favored by the multidimen-
sional system is indeed superior. The query
value > 7 AND value2 > 14, for example,
runs in an average of 2.3 seconds with a sequential
scan and 4.3 seconds with an index scan.

Interestingly, despite the more accurate selectiv-
ity estimation achieved by the multidimensional his-
togram, initial tests showed both systems using the

3The error pattern shown agrees nearly exactly with the pre-
dicted theoretical error, [min(x, y) − xy] for x and y between
0 and 1.

(a) Single-dimensional selectivity error (b) Multidimensional selectivity error

Figure 3: Heat map representation of selectivity errors for a set of queries on the Double dataset. The
horizontal position within the image corresponds to the value of x in the query run, and the vertical position
the value of y; the color represents the selectivity error. As shown in the color key at right, a black data
point represents zero error in the selectivity, whereas a white value represents a 25 percent error, so that the
database’s prediction of the number of rows returned differed from the true value by one-fourth the size of
the database.

(a) Single-dimensional selectivity error (b) Multidimensional selectivity error

Figure 4: Heat map representation of selectivity errors for different queries on the Census dataset.

Figure 5: Heat map describing how access paths
change as we change queries. Black: both meth-
ods use sequential scan. Gray: the multidimensional
system uses sequential scan, the single-dimensional
system uses an index. White: both methods use heap
scan on index.

same access paths for a given query. Since our more
complex query involves an additional comparison
per returned result, the cost of comparison overpow-
ers the difference in selectivity. It was necessary to
tweak a single parameter in the DBMS frontend to
see an impact in access paths. This parameter repre-
sents the time taken by the CPU to process a com-
parison relative to the time taken for I/O. The param-
eter was last set ten years ago, and since CPU speeds
have increased much faster than disk access speeds,
we find it reasonable to lower the value. We arbitrar-
ily set the value to zero, effectively discounting the
comparison time entirely.

4 Related Work

Muralikrishna and DeWitt (1988) describe the use
of equi-width multidimensional histograms for se-
lectivity estimation in relational databases. Our im-
plementation is roughly based on this description,
and we use the same construction algorithm.

Poosala and Ioannidis (1997) argue, however, that
both the simple equi-depth model and the construc-
tion model presented here are not ideal. They

present experimental results demonstrating that his-
tograms with bins chosen so as to minimize the vari-
ance between bins and those with bins chosen to
maximize the difference in values between bins can
yield more accurate estimates. They also develop a
construction algorithm, called MHIST, which takes
the “most important” split in any dimension at each
step.

One other issue with multidimensional his-
tograms is that although it is generally reasonable to
keep histograms on all single attributes of a table, it
is generally not reasonable to keep joint histograms
on all combinations of attributes, as there are an ex-
ponential number of such histograms. Deshpande et
al. (2001) address this problem through the frame-
work of statistical dependency models, developing a
system that can decide which attributes are related
and which are not. Markl et al. (2003) take an alter-
native approach from a learning perspective.

Bruno and Chaudhuri (2002) extend the multidi-
mensional histogram paradigm to cross-table statis-
tics. Joins are among the most expensive opera-
tions regularly conducted by a standard relational
DBMS, and statistics on join attributes may be able
to dramatically improve the ability of the optimizer
to choose appropriate join paths.

Another problem occurs when complex queries
address more than one multidimensional histogram.
Consider a query on attributes A, B, C, D, and E,
where the database has information on the joint dis-
tribution of A B and C as well as on C and D.
How can it combine that into a single selectivity es-
timate – moreover, one that will be consistent with
the results for the next query? What if it also had
joint information for B and E? Markl et al. (2007)
solve this problem through the principle of maxi-
mum entropy, which incorporates all of the available
information and makes as few further assumptions
as possible.

5 Future Work

This work can be extended in a number of interest-
ing directions, some of them of a larger magnitude
than others. We discussed work in Section 2.3 to-
wards generalizing our system to higher dimensions
and across tables. In this section we focus on addi-
tions to the existing two-dimensional histogram.

During query processing, we currently only rec-
ognize very simple queries for which the multidi-
mensional histogram can be used. Consider the case
where we have a query on three variables A,B,C
where the two-dimensional histogram applies to the
pair A,B. We could certainly benefit from using
the histogram on A,B and assuming independence
with C, but at the moment we cannot process that
query. More generally, if we have multidimensional
histograms on A,B and A,C, we want to pick the
histogram whose pair (or k-tuple) shows the most
correlation. We could also use the maximum en-
tropy work by Markl et al. (2007) described in Sec-
tion 4 to solve this problem.

Because we sample along two (or more generally
n) dimensions when we generate our histograms,
an interesting question is how many elements must
be sampled. Currently, the sample size is approxi-
mately 300k, where k is the number of bins in the
histogram, as described in (Chaudhuri et al., 1998).
This works well for a single dimension, but how
many elements do we need to sample when looking
on more dimensions? It may be that larger sample
sizes lead to better selectivity estimates.

As mentioned in Section 2.1, our system does not
generate a list of most common values (MCVs) dur-
ing histogram creation. On distributions where a few
values make up a large portion of the data, such as
the Zipfian distribution which often occurs in lin-
guistic data, MCVs can greatly increase the accu-
racy of estimates derived from the histogram. In the
two-dimensional case, an MCV is a unique tuple that
appears often in the data.

Many of the approaches described in Section 4
would be excellent extensions to our system. Es-
pecially interesting is building histograms on at-
tributes from different relations, as described by
Bruno and Chaudhuri (2002). We could get signif-
icant speedups for certain kinds of joins by creat-
ing a histogram on correlated attributes used in those
joins.

Currently we need to manually specify which
multidimensional histograms to create. It would be
desirable to instead have a algorithm that decides
which (if any) attributes would be best served by
a multidimensional histogram. This might involve
running a battery of queries using the single dimen-
sional histograms and evaluating the error of the se-

lectivity estimates. From there one might generate
histograms on pairs or k-tuples of attributes with the
highest error rates. Some work in this area has been
done by Markl et al. (2003), among others, but it re-
mains an open question for further research.

6 Conclusions

When estimating selectivity, the current version of
PostgreSQL and many other database systems as-
sume query clauses are independent. When at-
tributes are in fact correlated, this assumption can
cause significant slowdown due to incorrect access
paths. We have implemented a two-dimensional his-
togram to account for this correlation and produce
more accurate selectivity estimations. With a little
tweaking of parameters, these improved selectivity
estimates lead to improved access paths, which we
expect to result in faster query execution times.

The cost of creating these histograms is also rela-
tively small. Statistic creation times do increase, but
because statistics are gathered only infrequently, the
benefits of faster query execution should outweigh
these costs.

References
Nicolas Bruno and Surajit Chaudhuri. 2002. Ex-

ploiting statistics on query expressions for optimiza-
tion. In SIGMOD ’02: Proceedings of the 2002 ACM
SIGMOD international conference on management of
data, pages 263–274, New York, NY, USA. ACM.

Surajit Chaudhuri, Rajeev Motwani, and Vivek
Narasayya. 1998. Random sampling for his-
togram construction: how much is enough? SIGMOD
Rec., 27:436–447, June.

Amol Deshpande, Minos Garofalakis, and Rajeev Ras-
togi. 2001. Independence is good: dependency-
based histogram synopses for high-dimensional data.
In SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD international conference on management of
data, SIGMOD ’01, pages 199–210, New York, NY,
USA. ACM.

V. Markl, G. M. Lohman, and V. Raman. 2003. LEO:
An autonomic query optimizer for DB2. IBM Systems
Journal, 42(1):98–106.

V. Markl, P. Haas, M. Kutsch, N. Megiddo, U. Srivastava,
and T. Tran. 2007. Consistent selectivity estimation
via maximum entropy. The VLDB Journal, 16(1):55–
76, January.

M. Muralikrishna and David J. DeWitt. 1988. Equi-
depth multidimensional histograms. In SIGMOD ’84:
Proceedings of the 1984 ACM SIGMOD international
conference on management of data, pages 28–36, New
York, NY, USA, June. ACM.

Viswanath Poosala and Yannis E. Ioannidis. 1997. Se-
lectivity Estimation Without the Attribute Value Inde-
pendence Assumption.

G. P. Shapiro and C. Connell. 1984. Accurate estimation
of the number of tuples satisfying a condition. In SIG-
MOD ’84: Proceedings of the 1984 ACM SIGMOD in-
ternational conference on management of data, pages
256–276, June.

Michael Stonebraker, Lawrence A. Rowe, and Michael
Hirohama. 1990. The implementation of POST-
GRES. IEEE Transactions and Knowledge and Data
Engineering, 2(1), March.

U.S. Census Bureau. 2009. Public-use microdata sam-
ples. http://www.census.gov/main/www/
pums.html.

